9 research outputs found

    Busy burst technology applied to OFDMA–TDD systems

    Get PDF
    The most significant bottleneck in wireless communication systems is an ever-increasing disproportion between the bandwidth demand and the available spectrum. A major challenge in the field of wireless communications is to maximise the spatial reuse of resources whilst avoiding detrimental co-channel interference (CCI). To this end, frequency planning and centralised coordination approaches are widely used in wireless networks. However, the networks for the next generation of wireless communications are often envisioned to be decentralised, randomly distributed in space, hierarchical and support heterogeneous traffic and service types. Fixed frequency allocation would not cater for the heterogeneous demands and centralised resource allocation would be cumbersome and require a lot of signalling. Decentralised radio resource allocation based on locally available information is considered the key. In this context, the busy burst (BB) signalling concept is identified as a potential mechanism for decentralised interference management in future generation networks. Interference aware allocation of time-frequency slots (chunks) is accomplished by letting receivers transmit a BB in a time-multiplexed mini-slot, upon successful reception of data. Exploiting channel reciprocity of the time division duplex (TDD) mode, the transmitters avoid reusing the chunks where the received BB power is above a pre-determined threshold so as to limit the CCI caused towards the reserved chunks to a threshold value. In this thesis, the performance of BB signalling mechanism in orthogonal frequency division multiple access - time division duplexing (OFDMA-TDD) systems is evaluated by means of system level simulations in networks operating in ad hoc and cellular scenarios. Comparisons are made against the state-of-the-art centralised CCI avoidance and mitigation methods, viz. frequency planning, fractional frequency reuse, and antenna array with switched grid of beams, as well as decentralised methods such as the carrier sense multiple access method that attempt to avoid CCI by avoiding transmission on chunks deemed busy. The results demonstrate that with an appropriate choice of threshold parameter, BB-based techniques outperform all of the above state-of-the-art methods. Moreover, it is demonstrated that by adjusting the BB-specific threshold parameter, the system throughput can be traded off for improving throughput for links with worse channel condition, both in the ad hoc and cellular scenario. Moreover, by utilising a variable BB power that allows a receiver to signal the maximum CCI it can tolerate, it is shown that a more favourable trade-off between total system throughput and link throughput can be made. Furthermore, by performing link adaptation, it is demonstrated that the spatial reuse and the energy efficiency can be traded off by adjusting the threshold parameter. Although the BB signalling mechanism is shown to be effective in avoiding detrimental CCI, it cannot mitigate CCI by itself. On the other hand, multiple antenna techniques such as adaptive beamforming or switched beam approaches allow CCI to be mitigated but suffer from hidden node problems. The final contribution of this thesis is that by combining the BB signalling mechanism with multiple antenna techniques, it is demonstrated that the hybrid approach enhances spatial reusability of resources whilst avoiding detrimental CCI. In summary, this thesis has demonstrated that BB provides a flexible radio resource mechanism that is suitable for future generation networks

    Busy burst technology applied to OFDMA-TDD systems

    No full text
    The most significant bottleneck in wireless communication systems is an ever-increasing disproportion between the bandwidth demand and the available spectrum. A major challenge in the field of wireless communications is to maximise the spatial reuse of resources whilst avoiding detrimental co-channel interference (CCI). To this end, frequency planning and centralised coordination approaches are widely used in wireless networks. However, the networks for the next generation of wireless communications are often envisioned to be decentralised, randomly distributed in space, hierarchical and support heterogeneous traffic and service types. Fixed frequency allocation would not cater for the heterogeneous demands and centralised resource allocation would be cumbersome and require a lot of signalling. Decentralised radio resource allocation based on locally available information is considered the key. In this context, the busy burst (BB) signalling concept is identified as a potential mechanism for decentralised interference management in future generation networks. Interference aware allocation of time-frequency slots (chunks) is accomplished by letting receivers transmit a BB in a time-multiplexed mini-slot, upon successful reception of data. Exploiting channel reciprocity of the time division duplex (TDD) mode, the transmitters avoid reusing the chunks where the received BB power is above a pre-determined threshold so as to limit the CCI caused towards the reserved chunks to a threshold value. In this thesis, the performance of BB signalling mechanism in orthogonal frequency division multiple access - time division duplexing (OFDMA-TDD) systems is evaluated by means of system level simulations in networks operating in ad hoc and cellular scenarios. Comparisons are made against the state-of-the-art centralised CCI avoidance and mitigation methods, viz. frequency planning, fractional frequency reuse, and antenna array with switched grid of beams, as well as decentralised methods such as the carrier sense multiple access method that attempt to avoid CCI by avoiding transmission on chunks deemed busy. The results demonstrate that with an appropriate choice of threshold parameter, BB-based techniques outperform all of the above state-of-the-art methods. Moreover, it is demonstrated that by adjusting the BB-specific threshold parameter, the system throughput can be traded off for improving throughput for links with worse channel condition, both in the ad hoc and cellular scenario. Moreover, by utilising a variable BB power that allows a receiver to signal the maximum CCI it can tolerate, it is shown that a more favourable trade-off between total system throughput and link throughput can be made. Furthermore, by performing link adaptation, it is demonstrated that the spatial reuse and the energy efficiency can be traded off by adjusting the threshold parameter. Although the BB signalling mechanism is shown to be effective in avoiding detrimental CCI, it cannot mitigate CCI by itself. On the other hand, multiple antenna techniques such as adaptive beamforming or switched beam approaches allow CCI to be mitigated but suffer from hidden node problems. The final contribution of this thesis is that by combining the BB signalling mechanism with multiple antenna techniques, it is demonstrated that the hybrid approach enhances spatial reusability of resources whilst avoiding detrimental CCI. In summary, this thesis has demonstrated that BB provides a flexible radio resource mechanism that is suitable for future generation networks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Busy Bursts for Trading off Throughput and Fairness in Cellular OFDMA-TDD

    Get PDF
    Decentralised interference management for orthogonal frequency division multiple access (OFDMA) operating in time division duplex (TDD) cellular systems is addressed. Interference aware allocation of time-frequency slots is accomplished by letting receivers transmit a busy burst (BB) in a time-multiplexed minislot, upon successful reception of data. Exploiting TDD channel reciprocity, an exclusion region around a victim receiver is established, whose size is determined by a threshold parameter, known at the entire network. By adjusting this threshold parameter, the amount of cochannel interference (CCI) caused to active receivers in neighbouring cells is dynamically controlled. It is demonstrated that by tuning the interference threshold parameter, system throughput can be traded off for improving user throughput at the cell boundary, which in turn enhances fairness. Moreover, a variable BB power is proposed that allows an individual link to signal the maximum CCI it can tolerate whilst satisfying a certain quality-of-service constraint. The variable BB power variant not only alleviates the need to optimise the interference threshold parameter, but also achieves a favourable tradeoff between system throughput and fairness. Finally, link adaptation conveyed by BB signalling is proposed, where the transmission format is matched to the instantaneous channel conditions

    Self-organised interference mitigation in wireless networks using busy bursts

    No full text

    A randomized, observer-blind, controlled phase III clinical trial assessing safety and immunological non-inferiority of Vi-diphtheria toxoid versus Vi-tetanus toxoid typhoid conjugate vaccine in healthy volunteers in eastern Nepal

    No full text
    Typhoid remains one of the major serious health concerns for children in developing countries. With extremely drug-resistant cases emerging, preventative measures like sanitation and vaccination, including typhoid conjugate vaccines (TCV) remain the mainstay in its prevention and control. Different types of TCVs are being developed to meet the global demand. This report outlines the results from a study done to assess the immunogenicity and safety of Vi-Diphtheria toxoid (Vi-DT) TCV in Nepal. The study was a randomized, active-controlled, immunological non-inferiority and safety study. Eligible participants from Sunsari and Morang districts of eastern Nepal were randomized into 4 study groups (A-D) within 3 age strata (6 months to <2 years, 2 to <18 years, and 18 to 45 years). Groups A to C received a single dose (25 μg) of Vi-DT test vaccine from any of the 3 lots, while group D received the comparator, Typbar-TCV®, Vi-tetanus toxoid (Vi-TT) vaccine (25 μg) in 1:1:1:1 ratio and evaluated at 4 weeks postvaccination with 6 months follow-up. Amongst 400 randomized participants, anti-Vi-IgG seroconversion rates for all age strata in Vi-DT pooled groups (A+B+C) were 100.00% (97.5% CI 98.34–100.00) vs 98.99% (97.5% CI 93.99–99.85) in Vi-TT group (D) at 4 weeks. Comparable safety events were reported between the groups. Three serious adverse events (1 in Vi-DT; 2 in Vi-TT group) were reported during the 6 months follow-up, none being related to the investigational product. Thus, Vi-DT vaccine is safe, immunogenic, and immunologically non-inferior to Vi-TT when analyzed at 4 weeks postvaccination
    corecore